Skip to content
Your Ad Here

Recent Articles

30
Sep

Pebble launches new ‘health and fitness’ category, updates firmware to version 2.6 with new features

Pebble has had a big day at the end of September, and while a price drop for their wearables might be big enough for most people, a new software update is also bringing in new features.

Continue reading
iPhone Hacks | #1 iPhone, iPad, iOS Blog

30
Sep

The Teensy Audio Library

teensy3_audio There are a few ways of playing .WAV files with a microcontroller, but other than that, doing any sort of serious audio processing has required a significantly beefier processor. This isn’t the case anymore: [Paul Stoffregen] has just released his Teensy Audio Library, a library for the ARM Cortex M4 found in the Teensy 3 that does WAV playback and recording, synthesis, analysis, effects, filtering, mixing, and internal signal routing in CD quality audio.

This is an impressive bit of code, made possible only because of the ARM Cortex M4 DSP instructions found in the Teensy 3.1. It won’t run on an 8-bit micro, or even the Cortex M3-based Arduino Due. This is a project meant for the Teensy, although [Paul] has open sourced everything and put it up on Github. There’s also a neat little audio adapter board for the Teensy 3 with a microSD card holder, a 1/8″ jack, and a connector for a microphone.

In addition to audio recording and playback, there’s also a great FFT object that will split your audio spectrum into 512 bins, updated at 86Hz. If you want a sound reactive LED project, there ‘ya go. There’s also a fair bit of synthesis functions for sine, saw, triangle, square, pulse, and arbitrary waveforms, a few effects functions for chorus, flanging, envelope filters, and a GUI audio system design tool that will output code directly to the Arduino IDE for uploading to the Teensy.

It’s really an incredible amount of work, and with the number of features that went into this, we can easily see the quality of homebrew musical instruments increasing drastically over the next few months. This thing has DIY Akai MPC/Monome, psuedo-analog synth, or portable effects box written all over it.

Filed under: ARM, digital audio hacks
Hackaday

29
Sep

Mining Bitcoins with Pencil and Paper

mining

Right now there are thousands of computers connected to the Internet, dutifully calculating SHA-256 hashes and sending their results to other peers on the Bitcoin network. There’s a tremendous amount of computing power in this network, but [Ken] is doing it with a pencil and paper. Doing the math by hand isn’t exactly hard, but it does take an extraordinary amount of time; [Ken] can calculate about two-thirds of a hash per day.

The SHA-256 hash function used for Bitcoin isn’t really that hard to work out by hand. The problem, though, is that it takes a 64 byte value, sends it through an algorithm, and repeats that sixty-four times. There are a few 32-bit additions, but the rest of the work is just choosing the majority value in a set of three bits, rotating bits, and performing a mod 2.

Completing one round of a SHA-256 hash took [Ken] sixteen minutes and forty-five seconds. There are sixty-four steps in calculating the hash, this means a single hash would take about 18 hours to complete. Since Bitcoin uses a double SHA-256 algorithm, doing the calculations on a complete bitcoin block and submitting them to the network manually would take the better part of two days. If you’re only doing this as your daily 9-5, this is an entire weeks worth of work.

Just for fun, [Ken] tried to figure out how energy-efficient the bitcoin mining rig stored in his skull is. He can’t live on electricity, but donuts are a cheap source of calories, at about .23 per 200 kcalories. Assuming a metabolic rate of 1500 kcal/day, this means his energy cost is about 67 quadrillion times that of an ASIC miner.

Video below.

Filed under: misc hacks
Hackaday

28
Sep

THP Semifinalist: OSHWatch

watch

No, it’s not a finely crafted wrist accessory from Cupertino, but [Jared]‘s OSHWatch, but you’re actually able to build this watch thanks to an open design and reasonable, hand-solderable layout.

Built around a case found on DealExtreme that looks suspiciously similar to enclosures meant to hold an iPod Nano, [Jared]‘s smartwatch includes a 128×128 RGB OLED display, magnetometer, accelerometer, Bluetooth 4.0 transceiver, and a lithium-ion charger and regulator circuit. Everything is controlled with a PIC24, which should mean this watch has enough processing power to handle anything a watch should handle.

As for the UI and what this watch actually does [Jared] is repurposing a few Android graphics for this watch. Right now, the watch can display the time (natch), upcoming appointments on his schedule, accelerometer and magnetometer data, and debug data from the CPU. It’s very, very well put together, and repurposing an existing watch enclosure is a really slick idea. Videos below.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Filed under: The Hackaday Prize
Hackaday

28
Sep

Voltset Multimeters at World Maker Faire

voltset-1

Many tents at World Maker Faire were divided up into booths for companies and various projects. In one of these tents, we found the Voltset booth. [Tom, Ran, and Michael] were on hand to show off their device and answer any questions. Voltset is essentially a multimeter which uses your phone as a display. It connects to an Android phone via USB or an optional Bluetooth module.

Now we’d be a bit worried about the risk of damaging our phones with a voltmeter electrically connected via USB. However, many people have an old phone or retired tablet kicking around these days, which would be perfect for the Voltset. The Bluetooth module alleviates this problem, too – though it doesn’t fix the issue of what happens to the multimeter when someone decides to call.

Voltset isn’t new; both the Voltset team and the similarly specced  Mooshimeter were also at World Maker Faire last year. In the interim, Voltset has had a very successful Kickstarter. The team is accepting pre-orders to be shipped after the Kickstarter backers are sent their rewards.

voltset-2[Tom] told us that the team is currently redesigning their hardware. The next generation prototype board with more protection can be seen in the far right of the top photo. He also mentioned that they’re shooting for 5 digits of accuracy, placing them on par with many bench scopes. We’re skeptical to say the least about 5 digits, but the team is definitely putting their all into this product. We’ll wait until the Kickstarter backers start getting their final devices to see if Voltset is everything it’s cracked up to be.

Filed under: tool hacks
Hackaday

27
Sep

Third Person Skydiving

Skydiving GoPros were invented for a few reasons, and skydiving is right at the top of that list. You’ll be hard pressed to find a regular skydiver that doesn’t own at least one of the little cameras, and there are a few examples of helmets with three or four GoPros tacked on.

This is an entirely new application. Yes, you can now film yourself skydiving with a third person view.

[Jason] hacked together this camera rig in an hour by strapping a GoPro on a Nerf Vortex football, tying a length of paracord to the camera mount, and connecting the other end to a hip ring on the parachute harness. It took three flights to get the canopy in the camera’s field of view, but the results are spectacular. It’s a tad bit unstable when turning, but the fins on the Nerf football make for a very, very stable shot.

[Jason] isn’t jumping out of a plane with this contraption already dangling underneath him; the football, camera, and paracord rig isn’t launched until the canopy fully deploys. It’s perfectly safe, but we’ll expect someone to get the idea of strapping a keychain camera to their pilot chute soon.

Filed under: digital cameras hacks
Hackaday

26
Sep

A Very Bright LED Jacket

A collection of boards that make up the LED Jacket

Last year, [Ytai] went to Burning Man for the first time. He was a bit inexperienced, and lacked the lumens to make him visible on the Playa. This year, he made up for it by building an extra bright LED Jacket.

The jacket consists of 48 LEDs, at 150 lumens each. Each RGB LED module was placed on its own PCB, and controlled by the tiny PIC12F1571 microcontroller. This microcontroller was a great fit since it has three PWM channels (one for each color) and costs 50 cents. Firmware on the PIC allows the boards to be daisy-chained together to reduce wiring. This was done by using a protocol similar to the popular WS2811 LEDs.

Assembling 50 of the boards presented a challenge. This was addressed by using surface mount components, a solder stencil from OSH Stencils, an electric skillet, and a good amount of patience. The final cost of each module was about .

With 50 of the boards assembled, a two layer jacket was sewn up. The electronics were sandwiched between these two fabric layers, which gave the jacket a clean look. A wrist mounted controller allows the wearer to select different patterns.

For a full rundown of the jacket, check out the video after the break.

Filed under: led hacks
Hackaday

26
Sep

Are you having problems after upgrading to iOS 8.0.2?

Apple has just released iOS 8.0.2 for iPhone, iPad and iPod touch, which includes bug fixes and improvements. It also addresses the issues with cellular connectivity and Touch ID issues that affected iPhone 6 and iPhone 6 Plus users.
Continue reading
iPhone Hacks | #1 iPhone, iPad, iOS Blog

25
Sep

Fail of the Week: Battery Packin’

battery pack fail[NeXT] got himself an IBM ThinkPad TransNote and yeah, we’re pretty jealous. For the uninitiated, the TransNote was IBM’s foray into intelligent note transcription from roughly fifteen years ago. The ThinkPad doesn’t even have to be on to capture your notes because the proprietary pen has 2MB of flash memory. It won an award and everything. Not the pen, the TransNote.

Unfortunately, the battery life is poor in [NeXT]‘s machine. The TransNote was (perhaps) ahead of its time. Since it didn’t last on the market very long, there isn’t a Chinese market for replacement batteries. [NeXT] decided to rebuild the replacement battery pack himself after sending it off with no luck.

The TransNote’s battery pack uses some weird, flat Samsung 103450 cells that are both expensive and rare. [NeXT] eventually found some camera batteries that have a single cell and a charge controller. He had to rearrange the wiring because the tabs were on the same side, but ultimately, they did work. He got the cells together in the right configuration, took steps to prevent shorts, and added the TransNote’s charge controller back into the circuit.

Nothing blew up, and the ThinkPad went through POST just fine. He plugged it in to charge and waited a total of 90 minutes. The charging rate was pretty lousy, though. At 94% charge, the estimated life showed 28 minutes, which is worse than before. What are your thoughts on the outcome and if it were you, what would be the next move?


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Filed under: Fail of the Week, Hackaday Columns
Hackaday

24
Sep

Pick and Place Machines at Maker Faire

A few years ago, every booth at a Maker Faire had a 3D printer. It didn’t matter if 3D printing was only tangental to the business, or even if the printer worked. 3D printers have finally jumped the shark, and there’s going to be an awesome t-shirt to reflect this fact. This year there weren’t many 3D printers, leaving us asking ourselves what the new hotness is.

Pick and place machines. We couldn’t find many at the faire, and only Carbide Labs’ Pick and Paste machine was working on picking up small resistors and LEDs the entire faire. Carbide’s Pick and Paste machine is exactly what you would expect in a pick and place machine: it picks up components out of tapes and wells, orients them correctly, and plops them down on a board.

The killer feature for the Pick and Paste is its modular design. The toolhead is expandable, allowing anyone to add a second vacuum nozzle to double the rate parts are placed, or a solder paste dispenser. The guys didn’t have the paste dispenser working for the fair (leaded solder and kids don’t mix), but this machine is effectively a combination pick and place machine and solder paste dispenser, something that’s usually two machines on an assembly line.

Also at the faire was Tempo Automation. They’re in a pseudo-stealth mode right now, waiting until everything works perfectly until bringing their machine to the masses. It is, however, exceptionally fast and about a third of the price of a similar machine.

The only other pick and place machine at the faire was the Firepick Delta, one of the more popular projects on hackaday.io and one of fifty finalists for the Hackaday Prize. Unfortunately, the FirePick Delta was broken in shipping, and although [Neil] was sitting right next to the 3D printing guys, it would have taken all weekend to repair the machine.

Filed under: tool hacks
Hackaday